DPP - 2 (Capacitor)

Video Solution on YouTube:-

https://youtu.be/pGZdLYUMDIg

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/62

Q 1. Find the equivalent capacitance of the given circuit:

(a) $\frac{3 C}{2}$
(b) $\frac{C}{3}$
(c) 3 C
(d) C

Q 2. A capacitor $C_{1}=4 \mu F$ is connected in series with another capacitor $C_{2} \Rightarrow 1 \mu F$. he combination is connected across a D.C. source of voltage 200 V . The ration of potential across C_{1} and C_{2} is:
(a) $1: 4$
(b) $4: 1$
(c) $1: 2$
(d) $2: 1$

Q 3. The equivalent capacitance of three capacitors of capacitance C_{1}, C_{2} and C_{3} connected in parallet is 12 units and the product $C_{1} C_{2} C_{3}=48$. When the capacitors C_{1} and C_{2} are connected in parallel the equivalent capaeitance is 6 units. Then the capacitance are :
(a) $1.5,2.5,8$
(b) $2,3,7$
(c) $4,2,6$
(d) $1,5,6$

Q 4. Five identical metal plates $1,2,3,4$ and 5 each of area A on one side are fixed parallel and equidistant (d) to each other. The plates 1 and 4 are joined by a conductor, and plates 3 and 5 are also joined by a conductor as shown in figure. Then, the capacitance of this system between A and B is-

(a) $\frac{5 \varepsilon_{o} A}{d}$
(b) $\frac{4 \varepsilon_{0} A}{d}$
(c) $\frac{5 \varepsilon_{o} A}{3 d}$
(d) none of these

Q 5. Three capacitors of capacitances $2 \mathrm{pF}, 3 \mathrm{pF}$ and 4 pF are connected in parallel. What is the total capacitance of the combination?
(a) 9 pF
(b) 1 pF
(c) 5 pF
(d) 15 pF

Q 6. Four plates of same area of cross-section A are joined as shown in figure. The distance between each plate is d. The equivalent capacity between A and B will be

(a) $\frac{2 \varepsilon_{o} A}{d}$
(b) $\frac{\varepsilon_{0} A}{d}$
(c) $\frac{3 \varepsilon_{o} A}{d}$
(d) $\frac{3 \varepsilon_{o} A}{2 d}$

Q 7. Plot $A \& B$ represent variation of charge with potential difference across the combination (series and parallel) of two capacitors. Then find the value of capacitance of capacitors.

(a) $20 \mu \mathrm{~F}, 30 \mu \mathrm{~F}$
(c) $10 \mu \mathrm{~F}, 15 \mu \mathrm{~F}$
(b) $10 \mu \mathrm{~F}, 40 \mu \mathrm{~F}$
(d) $25 \mu \mathrm{~F}, 25 \mu \mathrm{~F}$

Q 8. Find the total capacitance for three capacitors of $10 f, 15 f$ and $35 f$ in parallel with each other?
(a) 20 F
(b) 50 F
(c) 60 F
(d) 10 F

Q 9. Five identical parallel conducting plates each of area A have separation 'd' between successive surface. The plates are connected to the terminal of a battery as shown in the figure. The effective capacitance of the circuit is

(a) $\frac{A \varepsilon_{O}}{4 d}$
(b) $\frac{4 A \varepsilon_{0}}{d}$
(c) $\frac{A \varepsilon_{O}}{3 d}$
(d) $\frac{3 A \varepsilon_{0}}{4 d}$

Q 10. The equivalent capacity between the points X and Y in the circuit with $\mathrm{C}=1 \mu \mathrm{~F}$.

(a) $2 \mu \mathrm{~F}$
(b) $3 \mu \mathrm{~F}$
(c) $1 \mu \mathrm{~F}$
(d) $0.5 \mu \mathrm{~F}$

Q 11. In the adjoining circuit, the capacity between the points A and B will be -

(a) C
(b) 2 C
(c) 3 C
(d) 4 C

Q 12. Calculate the equivalent capacitance between the points A and B of the circuit given below.

(a) $\frac{14}{19} \mu \mathrm{~F}$
(b) $\frac{13}{17} \mu \mathrm{~F}$
(c) $\frac{21}{13} \mu \mathrm{~F}$
(d) $\frac{11}{21} \mu \mathrm{~F}$

Q 13. Calculate the equivalent capacitance between the points A and B in the combination shown in Fig.

(a) $15 \mu \mathrm{~F}$
(b) $10 \mu \mathrm{~F}$
(c) $20 \mu \mathrm{~F}$
(d) 25 Mf

Q 14. The capacitance of a infinite circuit formed by the repetition of the same link consisting of two identical capacitors, each with capacitance C (figure), is

(a) xero
(b) $\frac{\sqrt{5}-1}{2} C$
(c) $\frac{\sqrt{5}+1}{2} C$
(d) infinite

Q 15. The resultant capacity between point A and point B in the following circuit will be:

Q 16. An infinite number of identical capacitors, each of capacitance $1 \mu \mathrm{~F}$ are connected as shown in the figure. Then the equivalent capacitance between A and B is :

(a) $1 \mu \mathrm{~F}$
(b) $2 \mu \mathrm{~F}$
(c) $\frac{1}{2} \mu \mathrm{~F}$
(d) infinite

Q 17. What is the equivalent capacitance between X and Y ?

(a) $10 \mu \mathrm{~F}$
(b) $15 \mu \mathrm{~F}$
(c) $18 \mu \mathrm{~F}$
(d) $6 \mu \mathrm{~F}$

Q 18. What is the equivalent capacitance between A and B if capacitance of each capacitor is C ?
(a) $\frac{5 C}{4}$
(b) $\frac{3 C}{2}$
(c) $\frac{2 C}{3}$
(d) $\frac{4 C}{5}$

Answer Key

