

DPP - 2 (Capacitor)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/65

Video Solution on YouTube:-

https://youtu.be/pGZdLYUMDlg

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/62

Q 1. Find the equivalent capacitance of the given circuit:

- (a) $\frac{3C}{2}$ (c) 3C
- A capacitor $C_1 = 4 \,\mu F$ is connected in series with another capacitor $C_2 = 1 \,\mu F$. he Q 2. combination is connected across a D.C. source of voltage 200 V. The ration of potential across C_1 and C_2 is:
 - (a) 1:4

(b) 4:1

(c) 1:2

- (d) 2:1
- The equivalent capacitance of three capacitors of capacitance C_1 , C_2 and C_3 connected Q 3. in parallel is 12 units and the product $C_1C_2C_3$ =48. When the capacitors C_1 and C_2 are connected in parallel the equivalent capacitance is 6 units. Then the capacitance are:
 - (a) 1.5, 2.5, 8
- (b) 2, 3, 7

(c) 4, 2, 6

- (d) 1, 5, 6
- Q 4. Five identical metal plates 1, 2, 3, 4 and 5 each of area A on one side are fixed parallel and equidistant (d) to each other. The plates 1 and 4 are joined by a conductor, and plates 3 and 5 are also joined by a conductor as shown in figure. Then, the capacitance of this system between A and B is-

(a) $\frac{5\varepsilon_0 A}{d}$

hysicsaholics

(c) $\frac{5\varepsilon_0 A}{3d}$

- (d) none of these
- Q 5. Three capacitors of capacitances 2 pF, 3pF and 4pF are connected in parallel. What is the total capacitance of the combination?
 - (a) 9 pF

(b) 1 pF

(c) 5 pF

- (d) 15 pF
- Q 6. Four plates of same area of cross-section A are joined as shown in figure. The distance between each plate is d. The equivalent capacity between A and B will be

(a) $\frac{2\varepsilon_0 A}{d}$

(b) $\frac{\varepsilon_0 A}{I}$

(c) $\frac{3\varepsilon_0 A}{d}$

- (d) $\frac{d}{3\varepsilon_0 A}$
- Q 7. Plot A&B represent variation of charge with potential difference across the combination (series and parallel) of two capacitors. Then find the value of capacitance of capacitors.

(a) 20 μ F, 30 μ F

(b) $10 \, \mu F$, $40 \, \mu F$

(c) $10 \mu F$, $15 \mu F$

- (d) 25 μ F, 25 μ F
- Q 8. Find the total capacitance for three capacitors of 10f,15f and 35f in parallel with each other?
 - (a) 20 F

(b) 50 F

(c) 60 F

- (d) 10 F
- Q 9. Five identical parallel conducting plates each of area A have separation 'd' between successive surface. The plates are connected to the terminal of a battery as shown in the figure. The effective capacitance of the circuit is

Physicsaholics

- (a) $\frac{A\varepsilon_0}{4d}$
- (b) $\frac{4A\varepsilon_0}{1}$
- (c) $\frac{A\varepsilon_0}{3d}$
- (d) $\frac{3A\varepsilon_0}{4d}$
- Q 10. The equivalent capacity between the points X and Y in the circuit with $C=1\mu F$.

Q 11. In the adjoining circuit, the capacity between the points A and B will be -

Q 12. Calculate the equivalent capacitance between the points A and B of the circuit given below.

<u>hysicsaholics</u>

- (b) $\frac{13}{17} \mu F$ (d) $\frac{11}{21} \mu F$
- Q 13. Calculate the equivalent capacitance between the points A and B in the combination shown in Fig.

- (a) 15 μF
- (b) $10 \, \mu F$
- (c) 20 µF
- (d) 25 Mf
- Q 14. The capacitance of a infinite circuit formed by the repetition of the same link consisting of two identical capacitors, each with capacitance C (figure), is:

- (a) xero

- (d) infinite
- The resultant capacity between point A and point B in the following circuit will be:

- (a) C
- (c) 2C
- (b) $\frac{c}{2}$ (d) 3C
- Q 16. An infinite number of identical capacitors, each of capacitance 1µF are connected as shown in the figure. Then the equivalent capacitance between A and B is:

<u>hysicsaholics</u>

- (b) 2 µF
- (a) 1 μ F (c) $\frac{1}{2} \mu$ F
- (d) infinite

Q 17. What is the equivalent capacitance between X and Y?

- (a) 10 μF (c) 18 μF
- (b) 15 μF
- (d) 6 µF

Q 18. What is the equivalent capacitance between A and B if capacitance of each capacitor is C?

Answer Key

Q.1 c	Q.2 a	Q.3 c	Q.4 c	Q.5 a
Q.6 c	Q.7 b	Q.8 c	Q.9 b	Q.10 a
Q.11 b	Q.12 a	Q.13 a	Q.14 b	Q.15 c
Q.16 b	Q.17 d	Q.18 a		